• 您好,欢迎来到环保设备网
二维码 |
当前位置: 首页 > 综合资讯 > 政策法规 > 新闻正文

研究城市污水管网中不同生化作用的基质流向特性

  日期:2019-12-01 17:01:28  浏览量:509   移动端
导读:不能满足社会需求, 这导致污水处理厂不断扩建、新建, 浪费了不必要的自然资源与社会资源而连接污水处理厂的污水管网系统, 不仅

不能满足社会需求, 这导致污水处理厂不断扩建、新建, 浪费了不必要的自然资源与社会资源而连接污水处理厂的污水管网系统, 不仅仅是污水的输送装置, 也可以看做是一个巨大的反应器, 生活污水从住户排放, 直到进入污水处理厂, 其间要经过很长的排水管道, 在此期间, 污水水质会发生一定程度变化, 部分大颗粒污染物会沉降至沉积层; 部分溶解态污染物会通过管网中微生物的新陈代谢作用被去除.所以, 探索城市污水管网中污染物质的迁移变化, 不仅可以发挥出管网对污染物质的处理潜力, 也可以有效改善污水处理厂的进水条件, 提升污水处理厂的处理效率.因此, 研究污水管网中污染物质的变化规律十分重要.


有机污染物是污水管网中主要的污染物质之一, 其组成成分主要是蛋白质(40%~60%)、碳水化合物(25%~50%)和脂肪(10%).在城市污水管网的厌氧环境中, 存在着发酵产甲烷、反硝化作用和硫酸盐还原作用等生化反应, 有机污染物作为基质被产甲烷菌、反硝化细菌和硫酸盐还原菌所消耗, 有研究表明, 城市污水管网的沉积层中, 含有产甲烷菌和硫酸盐还原菌, 大分子的有机污染物质可被水解为小分子有机物质, 并生成甲烷与硫化氢气体; 相关研究也表明, 在城市污水管网中, 由于污水中含有挥发性脂肪酸(VFA)等物质, 为产甲烷和产硫化氢提供了物质基础, 管网沉积层每平方米的甲烷产量可达(1.56±0.14)g·d-1, 硫化氢产量可达(9.20±0.39)g·d-1; Almeida等的研究认为在城市污水管网的厌氧环境中, 水力停留时间为1.5h, 污水中的溶解态有机污染物通过微生物的水解和发酵作用后, 可被去除19%;氨氮的去除可达6%.目前国内对于城市污水管网的研究, 主要集中于研究污水管网的水力输送能力, 而忽略了污水管网本身所具有的生化反应能力, 尤其对有机物消耗去向的相关研究较少.为此, 本研究针对城市污水管网中有机物的消耗流向, 建立了一套模拟城市污水管网, 用以研究城市污水管网中不同生化作用的基质流向特性.


1 材料与方法1.1 实验装置


本次实验所用反应器为城市污水模拟管网, 位于西安市第五污水处理厂区内, 以西安市城市污水为原水, 反应器由管径为200 mm的有机玻璃质圆形管道组成, 总有效长度32 m, 分四层管段设置, 管道可调节坡度, 并设有循环水箱和回流管.为模拟实际管网避光恒温的真实环境, 在管道外层包裹有2 cm厚的黑色保温材料.为控制管道内污水流速和流量, 在进水管和回流管上安装有阀门, 通过调节阀门的开启度, 实现流速和流量的控制.


1.2 模拟实验条件及进水水质1.2.1 实验条件


污水管网模拟装置在室温条件下运行, 实验温度为(20±2)℃, 装置密封性良好, 溶解氧为(0.3±0.1)mg·L-1.实验进水通过污水管道内放置的潜污泵提升至模拟管网系统的循环水箱, 之后在模拟管网系统中进行内循环以模拟实际城市污水管网.


1.2.2 进水水质


实验进水为西安市城市污水管网中的生活污水, TCOD(总有机物)为417~730 mg·L-1; TN(总氮)为39.80~61.72 mg·L-1; TP(总磷)为6.95~9.68mg·L-1; pH为6.5~7.50.


1.3 样品采集


实验第一阶段采用污水与实际沉积物的组合, 模拟污水管网在持续运行180 d后, 由于颗粒态物质的沉降, 会在管道底部形成厚度约为60 mm的沉积层, 设置污水流速为0.1 m·s-1, 运行时间为25 d; 实验第二阶段在模拟城市污水管网中铺设人工配置的石英砂与高岭土, 模拟实际管道沉积物, 用以研究仅在沉积作用与吸附作用下模拟污水管网中污染物质的变化, 消除了沉积物中污染物反向释放对污水水质的影响, 铺设厚度为60 mm, 铺设沉积物密实度与实际污水管道沉积物相似, 用灭菌污水运行反应器, 并去除管壁生物膜, 设置污水流速为0.1 m·s-1, 运行时间为61 d.


在第一阶段和第二阶段实验中, 污水在模拟城市污水管网中停留的时间为14 h, 即每天0800给模拟污水管网换新污水, 运行15 min稳定后, 在取样口采集进水样品、沉积物样品和甲烷气体; 每天2200在取样口采集出水样品、沉积物泥样和甲烷气体.


1.4 分析方法


CH4的测定选用气相色谱法, 分析仪器为GC-2014气相色谱仪(日本岛津).检测器为热导检测器(TCD), 色谱柱型号为TDX-01填充柱.柱温设置为100℃, 保持10 min. N2作为尾气, 流速为10.0 mL·min-1. Ar作为载气, 流速为48 mL·min-1.使用标准气体混合气校准, 其组分为37%CO2、4%N2、0.802%H2以及CH4.


化学需氧量COD采用重铬酸钾法测定; 总氮采用碱性过硫酸钾消解法测定; 总磷采用钼锑抗分光光度法测定[21].


实验所取样品均为随取随侧, 每个取样点的分析都设置3组平行样测定, 取平均值作为最终的有效数据.


1.5 研究方法


在污水缓流状态(v=0.1 m·s-1)下的模拟管网中, 导致COD发生变化的原因有两方面.其一, 污水流速较慢, 部分吸附在颗粒态物质表面的含碳有机物会沉降至模拟管网的沉积层表面, 导致COD发生变化; 其二, 含碳有机物作为微生物的主要营养物质, 通过其新陈代谢作用被降解与消耗, 从而导致COD发生变化, 其中厌氧发酵产甲烷、反硝化作用和硫酸盐还原菌还原硫酸根是3个主要降解途径.要探索在生化作用中的基质流向, 需要知道生化作用导致的COD变化量, 以及在厌氧发酵产甲烷、反硝化作用和硫酸盐还原菌还原硫酸根作用中COD分别被消耗了多少.


1.5.1 生化作用导致COD的变化量


本次实验分为了两个阶段进行.第一个阶段采用污水和城市污水管网沉积物的组合, 通过测量进水、出水的COD, 可得到COD的总变化量; 第二阶段采用污水和人工配置沉积物的组合, 通过测量沉积物中COD的变化, 可得到因沉积作用而导致的COD变化量.已知在缓流状态下, COD的变化是沉积作用与生化因素共同作用的结果, 因此, 生化作用导致COD的变化量为COD总变化量与沉积作用导致COD变化量的差值.

本文链接:http://www.fyepb.cn/news/junshi/103307.html 免责声明:此条信息由编辑或作者发布在环保设备网站,内容中涉及的所有法律责任由此商家承担,请自行识别内容真实性!

 
 
相关新闻
 
图片新闻
更多»今日新闻